
US Army Corps
of Engineers
Construction Engineering
Research Laboratories

USACERL Technical Report FF-95/10
April 1995

Development of a Transparent Computer
Application Distribution System for the
Directorate of Civil Works

by
Laura L Härmet, Edward J. Japel, Scott Maxwell, and Wayne J. Schmidt

The number of computer programs and updates
developed and distributed by the U.S. Army Corps of
Engineers continues to grow. Processing, archiving
onto diskette, and mailing this software can cost the
Corps thousands of dollars and dozens of man-hours
each year. Furthermore, diskettes are subject to
damage or delay, which can create extra unnecessary
costs for the Corps and its customers.

This report documents the development of GAPPL
(Get Application), a computer application distribution
system designed to provide users in the Directorate of
Civil Works quick, cost-effective access to group
software and updates. GAPPL was designed to work
transparently to the computer novice while offering the
experienced user capabilities for customizing certain
settings to better meet individual needs.

GAPPL has been in use by the Civil Works Operations
and Maintenance Branch since 1992. A return on
investment for GAPPL has not been calculated, but
experience with another electronically distributed Corps
application suggests that distribution savings for a
single new application to 40 districts may amount to
almost $7200 annually. GAPPL is designed to
distribute up to 30 applications.

mas m^mig mzmuMD *

Approved for public release; distribution is unlimited. 19950614 009

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Gtation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report FF-95/10, Development of a Transparent Computer Applica-
tion Distribution System for the Directorate of Civil Works

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user
of this report, your customer comments will provide USACERL with information essential for improving future
reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which
report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management
procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved,
operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material:

f. Relates to Area of Interest:

g. Did the report meet your expectations?

h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports
of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or
discuss the topic, please fill in the following information.

Name:

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 07044)188

Public reporting burden for this collection ot information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) REPORT DATE
April 1995

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

Development of a Transparent Computer Application Distribution System for the
Directorate of Civil Works

6. AUTHOR(S)

Laura L. Härmet, Edward J. Japel, Scott Maxwell, and Wayne J. Schmidt

FUNDING NUMBERS

CWIS
32719

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Construction Engineering Research Laboratories (USACERL)
P.O. Box 9005
Champaign, IL 61826-9005

8. PERFORMING ORGANIZATION
REPORT NUMBER

FF-95/10

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Headquarters, U.S. Army Corps of Engineers (HQUSACE)
ATTN: CECW-OM-B
20 Massachusetts Ave. NW
Washington, DC 20314-1000

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The number of computer programs and updates developed and distributed by the U.S. Army Corps of Engineers continues to
grow. Processing, archiving onto diskette, and mailing this software can cost the Corps thousands of dollars and dozens of
man-hours each year. Furthermore, diskettes are subject to damage or delay, which can create extra unnecessary costs for the
Corps and its customers.

This report documents the development of GAPPL (Get Application), a computer application distribution system designed to
provide users in the Directorate of Civil Works quick, cost-effective access to group software and updates. GAPPL was
designed to work transparently to the computer novice while offering the experienced user capabilities for customizing certain
settings to better meet individual needs.

GAPPL has been in use by the Civil Works Operations and Maintenance Branch since 1992. A return on investment for
GAPPL has not been calculated, but experience with another electronically distributed Corps application suggests that
distribution savings for a single new application to 40 districts may amount to almost $7200 annually. GAPPL is designed to
distribute up to 30 applications.

DTIC QUALITY nrSPBOTBI; 5

14. SUBJECT TERMS

Get Application (GAPPL)
Communication/Computer Systems
Civil Works

Computer Application Distribution System
15. NUMBER OF PAGES

42
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
MSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

USACERL TR FF-95/10

Foreword

This study was conducted for the Directorate of Civil Works, Headquarters, U.S. Army
Corps of Engineers (HQUSACE) under "Civil Works Investigations and Studies"; Work
Unit 32719, "Management Tools for Civil Works Operations and Maintenance." The
technical monitors were John Perez and David Harmon, CECW-OM-B.

The work was performed by the Facility Management Division (FF) of the Infrastruc-
ture Laboratory (FL), U.S. Army Construction Engineering Research Laboratories
(USACERL). Michael Golish is Acting Chief, CECER-FF, and Alan W. Moore is Acting
Chief, CECER-FL. The USACERL technical editor was Gordon L. Cohen, Information

Management Office.

LTC David J. Rehbein is Commander and Acting Director of USACERL, and Dr.

Michael J. O'Connor is Technical Director.

Accesion For

NTIS CRA&!
DTIC TAB
Unannounced
Justification ___

By ,
Distribution /

Availability Codes

Avail and lor
Special

- |.^.1,.-J.. ^ i trm i liiHiVr-tr^Y

USACERL TR FF-95/10

Contents

SF 298 1

Foreword 2

1 Introduction 5

Background 5

Objective 6

Approach 6

Mode of Technology Transfer 6

2 Design Considerations 8

Ease of Use 8

Reliability 8

Cost-Effectiveness 10

Version Tracking 13

Openness 13

3 Criteria for Development Tools 15

Communication Protocol Requirements 15

Development Language Requirements 17

4 General GAPPL Features 19

Communication Parameters 19

Application Updating Features 22

5 Functional System Description 24

Files on Mainframe 24

Files on the Personal Computer 25

Transfer Process 25

6 Summary and Recommendations 27

Summary 27

Recommendations 28

References 28

USACERL TR FF-95/10

Appendix A: GAPPL Mainframe and PC File Structures 29

Appendix B: GAPPL Data Flow Diagram 33

Distribution

USACERL TR FF-95/10

1 Introduction

Background

The number of computer programs being developed, distributed, and updated by the
U.S. Army Corps of Engineers (USACE) grows every year. This increase has created
a distribution challenge for Corps software maintainers and developers. New
applications and updates typically have been distributed on diskette through the mail.
This distribution method can take many administrative hours to process—and literally
days for delivery to the user. Many users cannot do their jobs without these software
programs. Any disk-handling damage or delivery delays can seriously interfere with
productivity and the ability to meet deadlines.

Because mainframe computers offer many users access to shared data at the same
time, a software developer may give many users simultaneous access to a new or
updated program by loading it onto a mainframe. Electronic connectivity between
mainframes and personal computers (PCs) allows users to download the application
over telephone lines (by modem) immediately upon release. Unfortunately, electronic
distribution can seem almost impossible to software users not familiar with the
operating systems for each piece of hardware involved in the transfer process. Before
downloading files from a mainframe, modem settings, network settings, and
mainframe settings must be initialized. This task can unnerve novices and hinder
their productivity.

In previous work, for the Corps Directorate of Military Programs, the U.S. Army
Construction Engineering Research Laboratories (USACERL) developed and
implemented a user-friendly mainframe-based application distribution program—PC
Dugout—in support of the Military Construction, Army program (Japel et al, May
1991). PC Dugout was designed specifically to distribute software transparently
within the Programming, Administration, and Execution (PAX) environment.
However, Dugout was not required to be portable for application outside of PAX.

The Directorate of Civil Works subsequently identified the need for a similar
distribution system for Civil Works applications. The system not only would be
required to operate effectively, economically, and transparently, it would have to be
portable for application beyond the then-current Civil Works computing environment.

USACERL TR FF-95/10

The distribution system also would have to be compliant with the Corps of Engineers

Automation Plan (CEAP), which was still under development at the time. Finally,

unlike Dugout, the new application distribution system would be PC-driven rather

than mainframe-driven. USACERL was tasked to develop the system.

Objective

The objective of this research was to develop a PC-based system for reliably and

transparently distributing Civil Works software applications to remote client

computers.

Approach

The fundamental requirement for the system was that it reliably and transparently

distribute any computer application to any user group, even one comprising many

novice users. The system was conceived as a broad application, that is, GAPPL would

operate the same way in any number of different instances, able to manage different

application libraries for different unique work groups. In creating the prototype, the

GAPPL software developers selected a representative Corps software developer and

set of users: the developer was the Civil Works Operations and Maintenance (CW

O&M) branch, and the targeted users were Engineer District personnel involved in the

CW O&M budgeting process. These offices were chosen because of the researchers'

previous experience with their requirements and the software applications used to

meet these requirements.

Core design considerations were specified and criteria for system development tools

were identified. The prototype system was developed for use within MS-DOS.*

Mode of Technology Transfer

Documentation and training materials have been developed for GAPPL and are now

being used in the field (Härmet and Japel, August 1992). The Directorate of Civil

Works, O&M Branch, administers the update and release of Corps applications to

District and Division personnel.

MS-DOS: Microsoft Disk Operating System. Also referred to as "DOS" in this report.

USACERL TR FF-95/10

Client system requirements are:

1. a PC using MS-DOS version 3.0 or later, at least 4 Mb of free disk space, and
580 Kb random-access memory

2. a login ID for the mainframe on which the application library resides, and read-
only access to the application library (available from the work group's GAPPL
administrator)

3. a current copy of the GAPPL executable program file.

Administrator system requirements are:

1. a PC using MS-DOS version 3.0 or later, at least 4 Mb of free disk space, and
580 Kb random-access memory

2. a current copy of the GAPPL administrator PC executable program

3. administrator access to all end-user mainframe files.

The GAPPL executable file and documentation are available from the USACERL
Workforce Improvement Team (CECER-FFK), commercial telephone 217-373-6718.

Application developer requirements are:

1. use of standard Windows-compliant programming tools

2. support of object-oriented graphical user interface

3. access to TCP/IP connectivity or modem.

USACERL TR FF-95/10

2 Design Considerations

The five main design considerations governing the development of GAPPL were:

1. ease of use
2. reliability
3. cost-effectiveness

4. version tracking

5. openness.

Ease of Use

Some computer users feel comfortable with applications that display technical
information on-screen while a program is running. However, many others find
technical information less helpful than visual symbols, pictures, menus, and choice
lists. When deciding on which method to implement, the developer needs to look at the
targeted user. Normally, if a typical user has substantial experience with computers,
then providing technical information within the application is appropriate. In a
communications program, such technical information includes display of the login
process and the names of all files being transferred. On the other hand, if the typical
user is a computer novice, then hiding such processes or making them transparent is
more appropriate. Any decisionmaking required would be via menus or choice lists.
Most users targeted for GAPPL had limited experience with computers. For this
reason, hiding the technical information was the best approach to user interface

design.

Reliability

Data Transfer

One aspect of reliability is that the product must dependably transfer data. Line noise
and transmission errors due to mainframe glitches are the main factors that interfere
with data-transfer reliability. There are several ways to combat data transfer
irregularities. One lies in the developer's choice of transmission protocol—good error-

USACERL TR FF-95/10

correction features are necessary. Another way to combat transmission errors is to go
through a nationwide network (or panoramic network), also using error-correction
ability. A third way is to use an error-correcting modem, but this is typically a user
choice. The application developer must be careful about choosing more than one error-
correcting device because too many can slow the data transmission. Data transfer
failures undermine a user's trust in a product, especially if the user is a novice, but a
slow transmission rate can greatly discourage use as well.

Connection

Another aspect of reliability is that the product must be able to connect through any
path to the mainframe. As shown in Figure 1, GAPPL must support four connectivity
paths. The user can use an individual PC through a modem, or a local-area network
(LAN) through network modems. Using either method, the user can then dial directly
to the destination mainframe or dial into a nationwide panoramic network that has
access to the destination mainframe—CDCNET, for example. Within these four
connectivity paths is a variety of local and panoramic networks, each with its own
nuances. By design, GAPPL must maintain reliability regardless of which connectivity
path the user takes.

jpjft Modem JL.

MhMm Modem ^

^> Direct JL ^> Mainframe

®

^> Panoramic Network £^> Mainframe

gpyjjl Local Network J^^> Direct ^ ^> Mainframe

:J^Sl Local Network^—cP Panoramic Network t^> Mainframe'

Figure 1. Connectivity paths.

10 USACERL TR FF-95/10

LANs presented a unique problem for GAPPL developers. With so many different
brands of LAN technology and data switches available, it is impractical to allow for
dedicated access by every possible type. The developers considered enabling GAPPL
to watch the user connect to the mainframe and remember the process. Unfortunately,
a "watch me" program can only learn one rigid procedure; it cannot deal with
exceptional situations such as a simple busy signal. A more practical design was to
allow the user to navigate his or her own path up to a common point of connection. At
this common point, where all connection paths converge, the user returns control to
the GAPPL system to continue the connection process.

Cost-Effectiveness

The conventional method of application distribution required the formatting of many
disks, loading the disks with the application and an installation file, and mailing the
disks to all users. The developer has had to follow this process every time the program
is updated. To further complicate matters, the distribution diskette must make it
through the mail system without being damaged or corrupted, and the user must then
install the application correctly on his or her PC before software distribution can be
considered successful. If any of these steps cause physical or electronic disk
corruption, the developer must repeat all distribution steps. This cumbersome process

wastes both money and labor.

Time

When distributing applications from a mainframe via telephone lines, each user can
get the data whenever it is convenient. The developer—or in the case of GAPPL, the
administrator—need only make one distribution version of an application and transfer
it to the mainframe. This results in a substantial decrease in time required of the
distributor. On the other hand, the time spent by the user to retrieve a new or
updated application increases, which may discourage use of the product. The design
objective, then, was to shorten data transfer time as much as possible. With
asynchronous communications, short transfer times can be a challenge. Transfer rates
are affected by the communications protocol, the mainframe, the telephone lines, and

the modems.

Another factor that affects transfer time is the size of the file being transferred. The
larger the file, the longer the transfer time. An archiving (data compression) utility
can be used to reduce each file's size. However, this would require GAPPL to be able
to create self-extracting archives because users may not have access to a compatible

USACERL TR FF-95/10 11

unarchiving utility on their PCs. PKware archiving utilities were considered because

the Corps site license from PKware* made this the most cost-effective alternative.

The archiving utilities are used to distribute the original application files. As changes

are made to the system, the archived application does not have to be distributed in its

entirety. A package that builds patches for the changes can be used to decrease the

sizes of update files. RTPatch, by Pocket Soft, Inc.,** was chosen because of the

timeliness of its release. (Other similar packages have since been released.)

The organization of archive files also affects transfer time. To archive an application,

all the files and executables belonging to the application are usually compressed into

one archive file. If an application were separated into smaller archive files, then

transferring one of those smaller files as an update would take less time than

transferring the entire application. Each smaller archive file would consist of files

likely to change in an update. An application update would require transferring only

the information that has changed instead of the entire application each time. As a

result, the user connection time to the mainframe would be much shorter. Unfortu-

nately, this method does not improve the transfer time for an entire application—in

fact, it increases the transfer time by a small amount because the transmission

protocol must spend a little time setting up each file in the set. However, since GAPPL

users will be getting updates more frequently than whole applications, and since the

additional overhead is negligible in any case, the GAPPL developers chose to split

applications into multiple files.

When the application has been downloaded, it must be successfully installed to

consider distribution complete. An easy-to-understand installation method is also

required to save manpower time. GAPPL design demands an installation procedure

to be consistent over each application so users will know how to successfully install

any application. At the same time, each installation procedure is specific to an

application. One application may require an installation program that prompts for

many directories, while another may only require an install batch file that requires no

parameters. Consequently, no common install program could be developed for all

applications. To solve this problem, GAPPL designers required that all installers use

the same command—INSTALL—to execute software installation. The Corps

application developer customizes an INSTALL.BAT or INSTALL.EXE file to do

whatever is needed; GAPPL merely looks for either type of file and executes it.

PKware, Inc., 7545 North Port Washington Rd Suite 205, Glendale, Wl 53217-3422

Pocket Soft Inc., P.O. Box 821049, Houston, Texas 77282

12 USACERLTRFF-95/10

Cost

Short transfer times allow shorter connection time with the mainframe over phone

lines, which means smaller charges for processing time. If the user is going through

a direct path, (e.g., stand-alone computer via modem), long-distance charges are an

added expense. Connection time cost is not the only expense—initial distribution cost

is also a factor. Depending on which development tools are used and which protocol

is employed in developing an application distribution system, royalty fees may be

required if it is issued to more than one or two users. To compare the expenses of

distribution on diskette to distribution via GAPPL, the following lists of expenses must

be considered:

Distribution expenses via GAPPL Distribution expenses via diskette

• Administrator's labor to create one set • Administrator's labor for one set of
of distribution files. distribution diskettes (times number

of users).

• Long-distance telephone call • Postage

• Processing time • Cost of diskettes

• Royalty fees for distribution tools

In a study of the Civil Works Automated Budgeting System, the cost of distributing

that application by mail ($10 per user) to approximately 40 users was calculated at

$7200 per year (Return on Investment Case Study, May 1992). An electronic

application distribution system—the forerunner of GAPPL— developed specifically for

ABS avoided most ofthat cost. It is estimated that a mature Corps application may

need to be updated two to three times a year. (A new application may require 10 or

more updates in its first year). GAPPL was designed to administer up to 30

applications for a single workgroup. It can be seen that a GAPPL instance used up to

its full potential could save $36,000 annually in diskette distribution costs. (Logic: $10

x 40 [Districts] x 30 [applications] x 3 [updates] = $36,000.) GAPPL also cuts the

administrator's labor costs because the distribution files need only be prepared once.

To make GAPPL cost-efficient, the expenses it incurs should not be more than the cost

of diskettes, postage, and labor of distribution by mail. By design, two expenses for

GAPPL were avoided. All external software used by GAPPL is already site-licensed

by the Corps or are free for nonprofit distribution, so no royalty fees apply. GAPPL

can also leverage the toll-free or local telephone numbers often used by panoramic

networks.

USACERL TR FF-95/10 13

Version Tracking

In order to implement the multifile-update design (see Cost Effectiveness—Time),
GAPPL needs to know which clients have which versions of which applications. The
ideal place to maintain this information, requiring no transfer time and thus the least
cost, would seem to be the user's PC. However, if a user ever needed to access the
same version of an application twice—which may be necessary if an error occurs
during installation or an update is accidentally deleted—he or she would have to
adjust the version number. This is not the best method because the majority of
GAPPL users are assumed to have limited computer experience. Therefore, the
version information should be maintained on the mainframe, where the administrator
has access to it.

Another design consideration is the method by which version information is stored.
There could be one file containing all version numbers of every application, or there
could be one version file per application. Because a GAPPL objective is to lower cost
by minimizing connection time, and because all version numbers are not required at
once, using one version file per application is the better approach.

Openness

While the GAPPL executable was designed to reside on the user's PCs, some additional
files also must be accessable by all users. These system files, such as the list of
available applications, must reside on the mainframe. GAPPL had to be able to issue
mainframe commands to access these files.

System openness encompasses two characteristics: portability and versatility.

Portability

In an open system, mainframe-specific commands cannot be interwoven with a PC
executable. The mainframe-specific problems that need to be considered are accessing
the mainframe, finding the GAPPL support files, and manipulating those files.

One way to keep a communications system portable is to choose a protocol with
scripting capability. This capability allows the login script to be changed without
changing the executable that drives it, thus allowing different mainframes to be
accessed. Another way to keep a system portable is to use files to store mainframe-
dependent variables, such as mainframe file references or macro definitions. It was

14 USACERLTRFF-95/10

decided to implement both of these methods in GAPPL to keep the system highly

portable.

Versatility

GAPPL had to be designed so it could transfer anything from a very small program
like a .COM file for a PC to a very large program like the Civil Works Automated
Budget System (ABS). To do this, GAPPL would have to work with some kind of
format common to all computer programs.

The most obvious feature common to all programs is that they are binary. Many
programs also include procedures to move or install an application after it has been
transferred to the user's computer. Many applications have their own specific
installation requirements, so an application's install procedure should be transferred
along with the program software from the mainframe. Because install procedures may
be written in text, GAPPL would have to be capable of transferring text files as well
as binary. Therefore, to build in versatility, GAPPL defines a standard application as
one or more binary files along with zero or more text files.

In addition to file types, file organization had to be considered. As discussed
previously (see Cost Effectiveness—Time), a standard version of an application should
consist of several archived files, each archive containing files that would be likely to
change concurrently in an update. This standard facilitates quick update transfers.
Another GAPPL standard promoting versatility is the use of a self-extracting archiving
utility so the user need not acquire special decompression software. (As noted
previously, this standard also reduces application transfer times.) Using these three
standards, GAPPL can distribute any kind of application.

USACERL TR FF-95/10 15

3 Criteria for Development Tools

Communication Protocol Requirements

A communication protocol is a set of rules for transferring information between

computers. Transferring data between a PC and a mainframe is difficult because the

hardware and operating systems are different. A communication protocol can navigate

such differences so two dissimilar computers can communicate as if they were using

the same hardware and operating system. Vistacom* and Kermit were the two

protocols considered for use with GAPPL.

Wide Usage

To maintain portability (see Chapter 2: Design Considerations—Openness—

Portability) the protocol must be operable on all kinds of panoramic networks,

mainframes, and PCs. The mainframe that GAPPL was originally to interact with was

the Washington Computing Center (WCC) machine. When designing GAPPL, the

researchers knew the Corps would be standardizing on one computing environment,

and that the WCC programs would be moved to that environment. But the destination

mainframes were still unknown. The protocol that GAPPL implemented had to be

guaranteed to work on both the WCC and the future mainframes. Vistacom, a Corps

of Engineers standard, would almost certainly be accessible on the new machine. But

Vistacom was not accessible from the WCC machine. Kermit, on the other hand, had

a worldwide network of support and had been implemented on almost every type of

mainframe. This protocol was already available on the WCC machine.

Error Correction

To promote reliability and user confidence, GAPPL must consistently transfer data

without errors. Transferring data without errors is mainly the responsibility of the

communication protocol. Most protocols transfer files in packets—chunks of data

wrapped in protocol-specific information. Error-detecting protocols examine the

wrapper to determine whether the enclosed information was corrupted during

Control Data Corporation (CDC), 8100-T 34th Ave. South, Minneapolis, MN 55425.

16 USACERLTRFF-95/10

transfer. Error-correcting protocols re-send corrupted packets until they get it right.

Both Kermit and Vistacom detect and correct errors.

File Transfers

The protocol for GAPPL must also be able to handle two different file types (see

Chapter 2: Cost-Effectiveness—Openness—Versatility): text and binary. Most

protocols, including Kermit and Vistacom, support these file types with ease.

Expense

The main objective of GAPPL is to inexpensively provide wide timely access to

applications. A protocol can affect cost in two ways: the speed with which it transfers

a file, which affects how much the user has to pay for mainframe processing time; and

the royalty fees for using it, which may cost the user or the distributor (depending on

who buys it).

Speed. A protocol's transfer speed depends on its algorithm. The Vistacom algorithm

is different from Kermit's, and they transfer files at a different rate. Transfer speed

can also be affected by user-changeable protocol settings, such as packet size. In

general, the larger the packet size, the faster a file will be transferred. However, large

packets slow transmission on noisy telephone lines, since more data must be re-sent

when there is an error. If the phone line is very clear, it is best to set the packet size

as large as possible. Kermit allows the user to change the packet size; Vistacom does

not.

Another feature that only Kermit supports is sliding windows. Kermit normally sends

each packet (window) of information to the receiving Kermit, then waits for the

receiving Kermit to check the packet and confirm succesful transfer. With sliding

windows, the receiving Kermit will wait for the specified number of packets before

responding. This allows the transfer to proceed much faster. As with the packet size,

the user can set the number of windows. The limitation to the number of sliding

windows is reliability: using a large number of windows may cause the protocol to

spend more time re-sending information. A drawback of this feature is that it is not

available on all versions of Kermit, so the GAPPL user may not be able to take

advantage of sliding windows.

Direct costs. The direct cost of a protocol is that which the user has to pay. Kermit,

a university-written and university-supported package, may be distributed free of

charge as long as it is used in nonprofit packages. Vistacom is copyrighted, and the

user must pay a royalty fee to use it.

USACERL TR FF-95/10 17

Scripting

In order to make GAPPL's operation transparent, the data communications dialogue
must be hidden from the user. The protocol should be able to execute commands
without needing input through an elaborate user interface. Putting several protocol
commands in a file is called scripting. Having a protocol execute a script is much like
having DOS execute a batch file. Each command is executed sequentially, and there
are control structures that the programmer can insert to give the scripts looping and
checking features.

Kermit allows scripting and can even be executed from the command line without
having to employ the user interface. Vistacom also allows scripts, but the scripts
cannot be executed from the command line. The user must be within Vistacom, using
its menu-driven interface. A package called VistaKit allows the programmer to micro-
manage the communication processes. While it provides a great deal of control, the
time it takes the user to become familiar with its functions is prohibitive.

Development Language Requirements

Portability

An application is portable if it can be moved easily from one operating system to
another. To successfully make an application portable, the development language
itself must be portable.

Size

Size is an important consideration when deciding which programming language to use
for the interface/driver portion. The front end of GAPPL must be able to spawn
communication processes, so it must not be so big that it consumes all random-acess
memory (RAM) with overhead functions. RAM is not the only resource taken into
consideration. Another consideration is that many of the targeted users' personal
computers have a minimal amount of memory and little available disk space.
Consequently, the interface cannot require a substantial amount of disk space.

The development language best suited to these criteria was the programming language
C. The C language is easy to code and maintain. Programs written in C can be ported
to other microcomputer architectures, and the language can be written at a very low

18 USACERL TR FF-95/10

level to reduce memory requirements for computing overhead. Microsoft* QuickC was
used in the development of GAPPL—the package's QuickC compiler generates small
compiled modules that can efficiently be distributed from a mainframe. Also, QuickC
requires no runtime module, so software written in it can be distributed and used

without paying a royalty fee to the language developer.

Microsoft Corp., 1-T Microsoft Way, Redmond, WA 98052-6399.

USACERL TR FF-95/10 19

4 General GAPPL Features

The GAPPL user interface consists of menus, choice lists, and forms. These constructs
make the application easy to use for the novice. Upon entering the GAPPL system, the
main menu is displayed. The main menu includes three options:

1. set up and edit communication parameters
2. get an application
3. quit.

Within the communication setup form, the user sets common parameters such as
communication port, telephone number, login ID, and password. These parameters
provide features intended to give the user control over the unpredictable connection
process and communication line. The control parameters include the variety of paths
available, baud rate and parity choices, modem settings, and control of speed versus
accuracy.

When the user decides to get an application, other features perform functions that are
informative or increase reliability. These features include out-of-date notices, disk
space checks, and error recovery procedures.

Communication Parameters

Paths

As discussed in Chapter 2, four basic connectivity paths are supported. The user can
connect through an individual modem or through a bank of networked modems.
Either way, he or she can then connect with the destination mainframe by calling it
direct or by calling through a panoramic network that has access to the mainframe.
When GAPPL was first implemented, the specific paths it supported followed the
general paths set up by design. The user could go through a modem or through a
network to a bank of modems. From there the user could (1) call the panoramic
network TELENET, which offered access to the Washington Computing Center (WCC),
or (2) call WCC directly. Later, when TELENET was deleted from the choice list
because of its high cost, the user could only call WCC directly. Upon porting GAPPL

20 USACERL TR FF-95/10

to the Corps of Engineers Automation Plan (CEAP) environment, the specific paths
changed again. This time the user could not call directly to CEAP. The CEAP
environment serves mainframes spread across the nation, linked through a nationwide
network called CDCNET. Those mainframes could be accessed only through

CDCNET.

In the communications setup form, two variables—route and mode—generate the four

general paths.

Route describes the way the user is accessing the mainframe. Currently, a choice list
allows the user to pick either CDCNET or manual connection. As stated above, CEAP
does not allow direct access, only access via CDCNET. The manual route actually
accesses CDCNET but gives the user greater control over the connection process. The

manual route was provided for more experienced users who can use the extra control
to their own advantage. It also provides a fail-safe path to the mainframe in case
something changes in the general login procedure. Choosing CDCNET for the route

automates the connection as much as possible.

Mode represents the device used to connect to the mainframe. The user can choose
between modem or network. The reason for the difference is that a variety of networks
and dataswitches are available. Providing specific commands for every network would
not have been feasible. GAPPL initializes the port according to the baud rates and
parities entered, then releases control for the user to access the modem from his
network. Once he has reached a point that is common to all networks, the user returns
control to GAPPL. The place where the user returns control—the escape point-
depends on the path being taken. For instance, when connecting to WCC directly, the
escape point was when the prompt "TSO" appeared, but when accessing WCC from
TELENET, the escape point was when the prompt "CONNECT" appeared. When
using a modem directly connected to the PC, the connection process is fully automated.
There is no need for an escape point because control is never relinquished to the user.

Baud Rates and Parity

As in most communications packages, GAPPL includes a way to change parity and
baud rate. The parities supported by GAPPL are even, odd, mark, and none. GAPPLs
way of handling baud rates is slightly unusual. Instead of using just one baud rate,
GAPPL requires two. This is because when connecting through a network, the user
may communicate with the network at a different baud rate than the network
communicates with the destination mainframe. The rate at which the user communi-
cates with the network is called the local baud rate. The rate at which the network
communicates with the destination mainframe is the mainframe baud rate. For users

USACERL TR FF-95/10 21

connecting directly through a modem, the local rate and the mainframe rate are the
same.

Modem Type

The type of modem affects the reliability of the connection. After the initial
implementation of GAPPL, the researchers discovered that some users were having
trouble getting their modems to respond correctly. Different brands of modems often
have their own set of commands with which to set modem soft switches. Hayes* brand
modems have a widely used set of commands, and many other modem manufacturers
incorporate these Hayes commands to make their own products Hayes-compatible.
GAPPL requires a modem to work in a standard way. To consistently get the user's
modems to respond correctly, it uses modem commands to control modem return codes,
dialing type (tone or pulse), and other settings (depending on the brand of modem).
The modem types GAPPL recognizes, and requires specific settings on, are Hayes and
Multimodem V.32 modems. Other types can be added easily.

Speed and Accuracy

Speed and reliability are sometimes mutually exclusive in data communications. The
speed is related not only to the baud rate but also to the packet size (see Chapter 3:
Protocol Requirements—Expense). Each packet has additional data associated with
it, like beginning and ending data and cyclic redundancy checksums. Bigger packets
generally reduce transfer times since this protocol overhead is a smaller fraction of the
whole. However, longer packets of data are more likely to be interrupted or corrupted
by static on the phone line. A packet must be re-sent if it is lost or corrupted during
transmission, so larger packet sizes may actually increase the amount of data
transferred. Increasing the number of retries also decreases the chance that the file
will be successfully transferred because Kermit quits if it is forced to retry too often.

With smaller packet sizes, the span between beginning and ending packet data is
shorter, but there is more data being sent because the file is divided into many more
packets. Low baud rates and small packets somewhat decrease the likelihood of file
transfer failure. GAPPL provides a speed/accuracy setting that gives the user three
choices: quickest/reliable, quick/more reliable, and slow/most reliable. The quick-
est/reliable setting divides the file into the largest packets available, whereas the
slow/most reliable setting divides it into the smallest packets possible. This capability
was added after the initial implementation of GAPPL as an attempt to decrease failed

Hayes Microcomputer Products, Inc., 5835 Peachtree Corners East, Atlanta, GA 30348.

22 USACERL TR FF-95/10

transfers. Reducing packet sizes in this way gives the inexperienced computer user
some control over technical communication variables.

Application Updating Features

Out-of-Date Notices

Because GAPPL keeps track of version numbers on the mainframe, it can notify the
user when he or she does not have the current version of an application. Before the
user is shown the list of applications to choose from, all version files are downloaded.
An asterisk appears beside those that need to be updated. This feature was also added
after the initial design of GAPPL because users were getting confused about which
applications needed to be updated. The time spent transferring additional version files
makes up for the time a user would spend checking on whether the application was up-

to-date.

Disk Space Check

Transfer failure due to insufficient disk space on the client machine is a potential
cause of lower productivity and user frustration. GAPPL checks the user's hard disk
for adequate space before proceeding with the download. This feature also potentially

saves much wasted connection time.

Error Recovery Capabilities

Besides using a protocol that detects and corrects errors, GAPPL provides a few other
checks to maintain reliability. One way GAPPL does this is to log the interaction
between the personal computer and the mainframe. GAPPL keeps two separate log
files: one keeps track of the PC commands to the mainframe and the mainframe's
response; the other records the status of every file transferred. This second log file
tells whether a file transfer was interrupted, failed, or succeeded. It also tells how
many bytes were transferred. When there is a problem connecting to the mainframe
via GAPPL, or when the update was unsuccessful, the user can look at the log files to

more fully understand the problem.

When downloading the update files, GAPPL writes the scripts so transfer of each
update file will be tried twice before the transfer is considered unsuccessful. By trying
twice, GAPPL may recover from line noise interfering with the transfer.

USACERL TR FF-95/10 23

On the next attempt after a failed transfer, GAPPL will continue transferring the
update from the point of failure. If the transfer fails in the middle of an update, the
next time the user logs in and attempts to get the update, GAPPL will download only
the files that did not make it through the first transfer. The user does not have to get
all the files associated with an update or complete system during one session.
Resuming from the point of failure avoids wasting time and money getting files the
user already successfully received. It also provides the user a way to avoid noisy
telephone lines. Many times, retrying a noisy connection a couple of hours or a day
after failure can make a large difference in the quality of the connection.

24 USACERLTRFF-95/10

5 Functional System Description

There are three main functional components to GAPPL: (1) the set of files it references
on the mainframe, (2) the set of files it uses on the PC, and (3) the process by which it

transfers data.

Files on Mainframe

The files on the mainframe are the ones that must be maintained by the administra-
tor. Three categories of files reside on the mainframe: the administration files, the

application files, and the status files.

The administration files consist of a list of users, a list of groups, and a list of
applications available to each group. The list of applications is commonly called a
directory because it gives other information pertaining to each available application,
including where it resides on the mainframe and who is responsible for maintaining
it. The list of users consists of all login IDs that have access to the GAPPL files and
also lists which group the users belong to. A group is a set of users with access to a
predefined set of applications. Each group has access to a different set of applications,
which is reflected in the list of applications that appears when using GAPPL. A
group's list of applications can be thought of as a view—a subset of the overall set on
the machine. There is also an admin group, which has read/write access to the
mainframe files; it defines the groups and their view of the applications. The groups
maintained in the system are listed in the groups file.

The application files are those that comprise an application. Each application can be
divided into member files. These member files are the set of organized archive files
discussed in Chapter 2 (Design Considerations—Cost Effectiveness—Time). Dividing
the application into modules yields a better way of updating applications. A user
retrieves only the files needed for an update. Each complete application includes all
of its modules (member files), an installation procedure file, and a GAPPL member file
that lists the names, sizes, and other information about each module of the application.
The GAPPL member file provides the information needed to build scripts that

accomplish the file transfers.

USACERL TR FF-95/10 25

A status file is maintained for each application/user combination. So, for example, if

the administrator is distributing three applications, each user will have three different

status files—one for each application. The status file is created when a user

downloads or updates an application. If the user has never attempted to retrieve a

particular application, the status file for that application will not be created. Status

files track which user has which version of which applications. They enable GAPPL

to know which files a user needs for an update, and document for the administrator

who has what version and how they got it. This latter information is required for

accurate technical support when a user has problems (see Appendix A).

Files on the Personal Computer

The major sections of GAPPL reside on each user's PC. To access the mainframe files,

a user must have the GAPPL executable file and the Kermit executable file. Two

groups of text files must also reside on the PC, in the same directory as the execut-

ables. One group consists of script files for Kermit. These scripts are used to set up

the local copy of Kermit, log into the mainframe, set up the remote copy of Kermit, and

transfer files. Some of the scripts contain variables that are set according to site

specifications. The other group of text files contain wholly site-specific information

used in the scripts. This information includes baud rate, parity, and the telephone

number used to reach the remote mainframe. The user configures the system initially,

and the settings remain the same until the user decides to change them (see
Appendix A).

Transfer Process

When GAPPL is told to get an application, it first constructs scripts according to the

settings in the communications parameters form. The scripts control which

communication port, baud rate, and parity are used. The user has a choice of

communicating via a modem or a LAN. This choice affects what kind of script is built.

GAPPL must also build a script to get the user file from the mainframe. GAPPL needs

this file to check whether the user is a registered GAPPL user and to determine which

group he or she belongs in. The group determines the user's view of available
applications.

Once the scripts are built GAPPL executes Kermit, which in turn runs the scripts.

Kermit logs into the mainframe and transfers the users file. If the script fails at any

point, Kermit logs the error and GAPPL informs the user of the problem. When the

users file is transferred, GAPPL then checks the users file for the logon identification

26 USACERL TR FF-95/10

(ID) used. If the ID is not in the list, GAPPL quits the process. If the ID is on the list,
GAPPL retrieves the user's group directory (list of applications). GAPPL then
constructs another set of scripts to transfer the list of applications based on the group,

and again calls Kermit to execute the scripts.

Next, GAPPL shows the user the list of applications. Asterisks mark the applications
that need to be updated. The user picks the applications to be updated in the current
session. GAPPL then retrieves the user's status file and the member file for that
application. The user must decide whether to download only the updated files or the
entire application. In either case a script is built. If the user wants an entire
application, every module of the application must be transferred. If just an update is
desired, only the updated modules are transferred. In the latter case, only modules
listed in the GAPPL member file with version numbers greater than the user status

file version are transferred.

If the user has enough disk space for the transfer, GAPPL indicates how long the
transfer will take and gives the user a choice to quit or proceed. If the user chooses to
proceed, GAPPL calls Kermit to run the constructed script. A transfer screen for each
module indicates how much of the file has been downloaded. When all files have been
successfully downloaded, GAPPL asks the user if he or she would like to install the

application. If so, it looks for an install file and executes it.

The application transfer process used by GAPPL is further illustrated in the data flow
diagram shown in Appendix B. To learn more about using GAPPL, read the GAPPL

user's manual. (Härmet and Japel, August 1992).

USACERL TR FF-95/10 27

6 Summary and Recommendations

Summary

The computer application distribution system GAPPL, developed for the USACE
Directorate of Civil Works, is an effective, user-friendly tool designed to give software
users access to new applications and updates more quickly and cost-effectively than
distribution on diskette by mail. While system operation is virtually transparent for
the benefit of novice users, GAPPL provides the more experienced user with
capabilities for modifying certain settings and defaults to tailor the transfer process
more closely to the individual's needs. A return-on-investment for GAPPL has not
been calculated, but a previous return-on-investment case study of the electronically
distributed Automated Budgeting System (ABS) indicates that the costs avoided by
electronically distributing a single application to 40 Districts may amount to almost
$7200 per year. Therefore, cost avoidance by using GAPPL could save the Corps tens
of thousands of dollars per year depending on how many applications were distributed
and how many users each application must be distributed to.

As noted in Chapter 2, one of the main goals of GAPPL was to establish an open
system that could easily be ported from one computing environment to another. An
important element in GAPPL's portability was the selection of a communication
protocol. Although Vistacom was the Corps standard communications package and
was considered carefully as a development tool, the Kermit protocol ultimately was
chosen because it is more universally available, more flexible, and may be used in not-
for-profit software packages obligation to pay royalty fees. Kermit transfers data
slower than some other protocols, but since it has a consistent communication interface
across three different operating systems, the advantage of portability outweighed the
relative transmission speed deficit.

Improvement of data transfer rates has been a continuous goal throughout GAPPL
development because faster file transfer means greater distribution cost avoidance.
Transfer rates can be affected by the size of the file and the baud rate. The integration
of archiving utilities decreases file size by as much as 50 percent, but even a
compressed application module may measure in the megabytes and take a consider-
able amount of time to transfer.

28 USACERL TR FF-95/10

Recommendations

Two general aspects of GAPPL could be improved with additional work: transfer rates

and user interface.

Transfer rates could be improved by integrating patch utilities into GAPPL. A patch

is a file that encodes precisely that information that changes between two versions of

an application. A patch is built using a special build executable and is applied using

a special patching executable. The size of a patch file can be as little as a few hundred

bytes to several thousand bytes, depending on the number of changes made in the

newer version. Such a decrease in update module size would represent a great boost

in distribution efficiency. Another way of improving transfer rates is to increase baud

rates. Over the lifetime of this work modem speeds have increased dramatically. At

the beginning of this research the transfer rate was 1200 bits per second, and

reliability was low. At the time of this writing, some sites have trunk lines running

at 19,200 bits per second. These are all transfer rates for asynchronous communica-

tion. If synchronous communication can be implemented, transfer rates would jump

to 57,600 bits per second. Synchronous communications will be an option when the

CEAP environment is completed.

The user interface also could be improved. GAPPL currently uses simple menus and

forms that are easy to use but not consistent with other Corps applications. The

Automated Budget System (ABS) uses menus and forms that operate slightly

differently from those in GAPPL. The Microsoft Windows™ user interface is designed

to promote similarity between applications. Although ABS is a database application

and GAPPL is a communication application, user efficiency could be further enhanced

if the two systems used the screens and pulldown menus common to all Windows™

applications.

References

"Automated Budget System for Divil Works Districts," Return on Investment Case

Study, vol R15, no. 1 (U.S. Army Construction Engineering Research Laborato-

ries [USACERL], May 1992).

Härmet, Laura L. and Edward J. Japel, GAPPL Application Distribution Facility

User's Guide: Version 2.0 for the Corps of Engineers Automation Plan, TR FF-

92/03/ADA256860 (USACERL, August 1992).

USACERL TR FF-95/10 29

Appendix A: GAPPL Mainframe and PC File
Structures

Path Structure Required of Remote Computer

Library
Directory

Gappl Group File
Gappl Users File

Gappldir

Application 1

Application 2

Group 1 Directory
Group 2 Directory

Group N Directory

Gappl Member File
Member 1
Member 2

Member M
INSTALL.BAT

Gappl Member File
Member 1
Member 2

Member K
INSTALL.BAT

Application J

Gappl Member File
Member 1
Member 2

Member P
INSTALLBAT

Status Files on Remote Computer

Library Status
Directory — Gapplsts

Application 1
Application 2

Application J

Note:
J <= 30, N > 0, M > 0, K > 0, P > 0

30 USACERL TR FF-95/10

GAPPL Users File Structure

Record Format

Field
Login ID
Gappl group

Type
string
string

Description
Login ID to identify the user
The group that the user belongs in

Length
limited to 25 char.
8 characters

Use: * Identifies the user's group, which specifies the directory he will see.

GAPPL Directory File Structure

Record Format

' Field Type Description Length

Description string Description of the application 40 characters

Version
H Latest version of the application 5

Blank Space - This is a blank field needed to separate version -date 1

Date " Release date 10 "

Name
ii Name of the application. Used for PC directory 8

Directory
ii Directory on the mainframe where the application is. 32 "

Initial Version
II Last distributed version on disk 5

POC Name
II Point of Contact name 20 "

POC Phone
n Point of Contact phone number 20 "

Use: 'maintains information for the various applications
'source of the menu displayed on the user's PC

GAPPL Member File Structure

Record Format

Field Type Description Lenqth

Member Name
Version
Zipped Size
Unzipped Size
DOS Filename
DOS Extensior

string
it

II

II

Mainframe filename of the member file.
Latest version of the member
Size of the zipped member in bytes
Size of unzipped member in bytes
PC filename without the extension
PC extension with or without the '.'

8 characters
5
8
8
8
4

Use: 'maintains information for the members that comprise an application

Note: The text files, such as INSTALL.BAT, do not have a version number in the GAPPLMBR file. This is
so they are brought down every time the user gets an update.

USACERL TR FF-95/10 31

GAPPL Status File Structure

Record Format

Field Type Description Length

Version string Latest version the user has 5 characters
Date string Date the user downloaded the.application 10
User Name string The person who downloaded the application 20
Route string Path 15
Mode string Network or modem 15
Local baud string Network/modem baud rate 6
Remote_baud string Mainframe baud rate 6
Login id string Login id 20
Appname string Name of application 8
Group string Group 8

Use: 'records the latest version of each application a user has.
Note: There is a GAPPLSTS file under each user's logon for each application that they have downloaded.

Each file consists of one record described in the above format.

GAPPL Group File Structure

Record Format

Field Type Description Length
GAPPL group string Valid group 8 characters

Use: 'maintains list of valid GAPPL groups

32
USACERL TR FF-95/10

Path Structure on User's PC

User's GAPPL
Directory

Directory for
Application 1

Directory for
Application 2

Directory for
Application J

.GAP Files

GAPPL Executable

Kermit Protocol + log files

PKunzip Executable

Member 1
Member 2

Member X
INSTALL.BAT

Member 1
Member 2

Member Y
INSTALL.BAT

Member 1
Member 2

Member Z
INSTALL.BAT

Note:

The number of application directories depends on how many applications the user has downloaded
through GAPPL The number of members for any application depends on whether the user
has downloaded just the updates for an application or the entire application. In any case, the
INSTALL.BAT file is brought down for every download.

USACERL TR FF-95/10 33

Appendix B: GAPPL Data Flow Diagram

This appendix shows a series of diagrams that represent how data flow through the
GAPPL process. Figure Bl charts the overall data flow. The circle, or "bubble" in
Figure Bl is "exploded" in Figures B2-B5. Figure B2 shows processes within bubble
no. 1 in Figure Bl, Figure B3 shows processes within bubble no. 1.1 in Figure B2, and
so on.

34 USACERL TR FF-95/10

c
o
CO o

Q-.-Q
< _J

tn
>_ 3
CD 'S
CO iS ._
3 CO Li.

a)

A

J3 .!=

< Li.

c
o

.9. b

CD ^J

> £
§-H5
O TJ

5 i

_l
a.
GL
<
CD —"
c
o
3

-Q
5

W o

at
io

n
D

ds

gn
\

D
O

I.d
fd

L

d
a

ta

6-
19

93

H
ar

m
e

M
9

9
3

H

ar
m

e

• S-o Ll- ■»— cö c\J cö

< CD (a o nj
< a -a C3 CO _J O _i

CD ..

™ w (B EOmOm
Z D. ^ CO -n -n

t?«"-z a §».5

'5"o 2
t= CO CO Vj "TJ

? £ 2 o o
Q.Q.Ü00025

CD
■*—•

3
to Q.
CD £
CO o
3 O

a>

3
XI
O) c
s o

(0

01 u o

s
O

ffl

3
O)
il

USACERL TR FF-95/10 35

_1 co
0. co
0. a>
<
CD

D.
c c
o o
3 _. 13

_Q

~ S> i»

0) CO <0 aus
o o'cvi

CD

E
en 'S
o> E

o ,- m V ro

ca
t

w
in

00

0 "5 6 I 61
Ü CM ro CM CO

Q.8S CL QL -j Q.S
Q-<=: 2 a. a> (fl CB (0

< -a n < CO _i t73 _l

'<£ ..
E£
10 «* m Z 0- -2
♦- ♦- LL

E O
>>
m
■o
<D

Om

*■ CD CD CD

ro
je

ro

je

ha
rt

5 £
CO
d>

T5 T5
O O

Q_ Q. o ü ü o 2 2

c
o
co o
18
< LL

■a c a

o c
10 a>

3
JO
CO c

1

o c
0)
25

S
E
o
«^
■a
a>

■o
o
5.
x a>
w
(0
0) u o

(V ffl
£
3
CD

E

36 USACERL TR FF-95/10

c
o c
ffl ü
o o
n CD

n (!)
< CO

_J
Q.
0.
< o o o
c CD
o 0)

v— CO
3

JD c
o

to ffl ^, .^
Q "O o co <i) CO CD

E
m

CD C
O) E
■>— ffl

V- »o
«. T3 o u»

I col
•° S-o .£ CM en W ffl

CL o) 2
10 A -> CL 3

Q.^ 2 .Q CD m CD ffl
< TI 73 O CO _i CO _l

CD' ..

;t
 N

am

:t
 P

at
h

Fi
le

: 1 °
z^

DO

<1) ie
d

O
n

ie
d

B
y:

2 2r f 1 ■ffl

0) o o
CL CL O O ü Ü 2 2

XI
CD
CO

"O

ffl
>

CD
' CO
•>- T3

CD
1— ffl CO

>

c
o &<
ffl o
Ü o ^ CD
CD > Q
Q. Q.
3 3
O O

kc5 (5

□

c
Ü

ffl
o £• *«— o
CD o •> en
Q.
T3 ■D
O TJ

r
U) cc

0)

■Q
3

C

E

■o
a>

■o o
a
x
a>
V)
0)

0) u o

CO
ai

il

USACERL TR FF-95/10 37

_l
0.
Q.
<
CD n
c (0

o W
3 CD
XI U
i_ CO

to U>

D XI a.

CD
I"

on 0) m a)
c c
O CD

•J= CO
co "a

-a
to

CD

i—

E
CO

O c
en E
-r- CO

E o X ■A I
O Q. o CM ffl W CO

Q- a> o CD
O. ->

a-<-. CD CD to CO CO

< -a X> U C/J _i CO _1

CD ..

E£
(0 CO
2 Q. is

iZ

CD

E
co

C
O
x>

CD

><
m
x>
en

8&
-O XI
CO CD

en a)
'o o r

CO r
CO
CD

CO
CD

T5 XI
O O

a. a. Ü O O Ü 2 5 |

6 c
a
JO
3

C

3
E
o
k.

■o
CO
■o o
CL
X
a>
en
co
to
co
a)
u o

CO

3

38 USACERLTRFF-95/10

a
3
ro
to
■o

CD

ffl
CL-
D i

2 « 3
D W Li-

ra ra _o o
Q.^ £?
CL a) .2
< > Li.

CL

ra ra
o .o

D- tU Sä
< > U-.

J: ax
Ü < LU

_l
CL
0-
<
CD
c _U)

o Li.

ZJ r*
XI m

co
Q ■o CD ci <i) CD t5

o n>
•q
CO

a; -z. CD E
m

o> E
•■- ra

ra TJ
o
o
o

CD
i

o X «X
o a. in (N m W ra
CL D5 o c ra CL -i Q- 3
CL<-: a> m CD «
< -o TJ H C/J _i W _j

ä ..
E £
as <o
Z 0. j6

il

0)
E ra
z

c
O

CD

m

CD

Oca
CU CD

CD a>

'P P
t: ra
r

ra ra
a)

ra
CD

T5 ^ o o
Q.0.ÜÜ O OSS

3
E
o
«^
■o
a>

■o o
a x
at
w fl>
(0
(a
0) u
o

in
Oil

£
3
O)

USACERL TR FF-95/10 39

USACERL DISTRIBUTION

Chief of Engineers
AHN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CECC-R
ATTN: CERD-L
AHN: CERD-OM-B (2)

US Army Engr District
ATTN: Library (40)

US Army Engr Division
AHN: Library (12)

CEWES 39180
ATTN: CEWESHE-E

Defense Tech Info Center 22304
AHN: DTIC-FAB (2)

63
4/95

This publication was reproduced on recycled paper.

